Logic Circuits – Build these in the Falstad Simulator

http://www.falstad.com/circuit/index.html

1	A O X B O O O				
	$C \circ \longrightarrow V$				
	Complete the truth table.				
	A B C X Y Q				
	0 0 0				
	0 0 1				
	0 1 0				
	0 1 1				
	1 0 0				
	1 0 1				
	1 1 0				
2	Build the circuit that matches this logic expression. ————				
	$\mathbf{Q} = \mathbf{A}.\mathbf{B} + \mathbf{A} + \mathbf{B}$				
	Create a truth table similar to the one above.				

3

Build the circuit that matches this logic expression.

$$Q = (A + B) \cdot (\overline{A \cdot B})$$

Create a truth table similar to the one above.

4

Build this in the simulator and complete the truth table.

Complete the truth table below to show the operation of this logic circuit.

A	В	С	D	Q
0	0			
0	1			
1	0			
1	1			

Use the simulator to build a circuit to solve this truth table.

Copy the circuit into the space below.

The truth table for a logic circuit is shown below.

A	В	С	D	Q
0	0	1	0	0
0	1	1	1	1
1	0	1	1	1
1	1	0	1	0

(a) Inputs A and B are both connected to two gates, having outputs C and D.C and D then form the inputs to a third gate providing the output Q.In the space below draw the logic circuit that would give these outputs.

A 0----

C

——○Q

в о-----

D

6

Build this in the simulator

Complete the truth table to show the logic values of C, D and Q for all the combinations of variables A and B.

\mathbf{A}	В	C	D	Q
0	0			
0	1			
1	0			
1	1			

7

Use the simulator to build a circuit to solve this truth table.

Copy the circuit into the space below.

The Boolean equation for a logic circuit with inputs A and B and output Q is

$$Q = (\overline{A} + \overline{B}) \cdot (A + B)$$

(a) Complete the truth table to show the logic values of the terms below for all the combinations of variables A and B.

A	В	Ā	B	$\overline{A} + \overline{B}$	A + B	Q
0	0					
0	1					
1	0					
1	1					

(5 marks)

(b) Complete the diagram below to show how a logic circuit can be constructed from two NOT gates, two OR gates and one AND gate to represent the Boolean equation above.

A 0-----

——○ Q

В 0-----

(5 marks)

(c) State which single logic gate has the same function as the complete circuit above.